
cuisine Documentation
Release

2011, Sebastien Pierre

April 20, 2015

Contents

1 Installation 3

2 How to get started 5

3 Troubleshooting 7

4 Contributing specific implementations 9

5 Modules 11

6 More? 13

i

ii

cuisine Documentation, Release

/ /
___ ___ ___ ___

| |)| |___ | |)|___)
|__ |__/ | __/ | | / |__

-- Chef-like functionality for Fabric

Fabric is an incredible tool to automate administration of remote machines. As Fabric’s functions are rather low-level,
you’ll probably quickly see a need for more high-level functions such as add/remove users and groups, install/upgrade
packages, etc.

Cuisine is a small set of functions that sit on top of Fabric, to abstract common administration operations such as
file/dir operations, user/group creation, package install/upgrade, making it easier to write portable administration and
deployment scripts.

Cuisine’s features are:

• Small, easy to read, a single file API: <object>_<operation>() e.g. dir_exists(location) tells if there is a remote
directory at the given location.

• Covers file/dir operations, user/group operations, package operations

• Text processing and template functions

• All functions are lazy: they will actually only do things when the change is required.

Contents 1

http://fabfile.org

cuisine Documentation, Release

2 Contents

CHAPTER 1

Installation

Cuisine is on PyPI so you can either use easy_install -U cuisine or pip install cuisine to install
it. Otherwise, you can download the source from GitHub and run python setup.py install.

3

http://github.com/sebastien/cuisine

cuisine Documentation, Release

4 Chapter 1. Installation

CHAPTER 2

How to get started

Open up a python shell and type:

import cuisine

Cuisine is designed to be a flat-file module, where all functions are prefixed by the type of functionality they offer
(e.g., file for file operations, user for user operations). The available groups are:

text_* Text-processing functions

file_* File operations

dir_* Directory operations

package_* Package management operations

command_* Shell commands availability

user_* User creation commands

group* Group creation commands

mode_* Configures cuisine’s behaviour within the current session.

select_* Selects a specific option, such as package back-end (apt, yum, zypper, or pacman)

If you’re using an interactive Python shell such as IPython you can easily browse the available functions by using
tab-completion.

In [2]: cuisine.file_
cuisine.file_append cuisine.file_is_file cuisine.file_unlink
cuisine.file_attribs cuisine.file_is_link cuisine.file_update
cuisine.file_attribs_get cuisine.file_link cuisine.file_upload
cuisine.file_ensure cuisine.file_local_read cuisine.file_write
cuisine.file_exists cuisine.file_read
cuisine.file_is_dir cuisine.file_sha256

As the functions are prefixed by they type of functionality, it is very easy to get started using an interactive shell.

If you would like to use cuisine without using a fabfile, you can call the mode_local() function.

import cuisine
cuisine.mode_local()
print cuisine.run("echo Hello")

alternatively, you can also directly connect to a server

5

http://ipython.org/

cuisine Documentation, Release

import cuisine
cuisine.connect("my.server.com")
print cuisine.run("echo Hello")

If you want to use cuisine within a fabfile, simply create a fabfile with the following content:

from cuisine import *

def setup():
group_ensure("remote_admin")
user_ensure("admin")
group_user_ensure("remote_admin", "admin")

6 Chapter 2. How to get started

CHAPTER 3

Troubleshooting

If you are encoutering problems, please check the following:

• The user@host is running an SH-compatible shell (sh, dash, bash, zsh should work)

• The system has openssl base64, md5sum and sha1sum commands in addition to the basic UNIX ones.

If you still have a problem, simply file a bug report here https://github.com/sebastien/cuisine/issues

Right now, cuisine is tested on Ubuntu. Some contributors use it on RHEL and CentOS. If you use on a different
system, let us know if it works!

7

mailto:user@host
https://github.com/sebastien/cuisine/issues

cuisine Documentation, Release

8 Chapter 3. Troubleshooting

CHAPTER 4

Contributing specific implementations

Cuisine was originally developed as a Debian/Ubuntu-centric tool, but can easily be adapted to other distributions or
Unix flavor, the only caveat being that the shell is expected to be bash-compatible.

If you want to implement a specific variant of some functions for a specific platform, you should do the following:

1. Open the cuisine.py source and look for the definition of the function that you would like to specialize.

2. If the function is decorated by ‘@dispatch‘, it means it already supports specific back-ends (see package_*
functions), and you can proceed to the next step. Otherwise, you can either file a ticket on Github or read the
source and mimic what we’ve done for package_*

3. Create a specific version of the decorated function by creating a new function with the same name, suffixed by
your specific backend name. For instance, if you’d like to create a yum backend to package_ensure, you would
need to create a function package_ensure_yum with the same arguments as package_ensure

4. Once you’ve created your specific functions, make sure that you have a select_* matching your function group.
For the package_* functions, this would be select_package.

5. Look for the supported variable in the select_* and add your backend suffix to it (in our example, this would be
yum)

To use a specific backend implementation of a set of features, use the select_* functions.

To use the ’apt’ backend
cuisine.select_package("apt")
To see the available backends
print cuisine.select_package()

9

mailto:'@dispatch

cuisine Documentation, Release

10 Chapter 4. Contributing specific implementations

CHAPTER 5

Modules

Cuisine-PostgreSQL http://pypi.python.org/pypi/cuisine-postgresql/

11

http://pypi.python.org/pypi/cuisine-postgresql/

cuisine Documentation, Release

12 Chapter 5. Modules

CHAPTER 6

More?

If you want more information, you can:

• Read the presentation on Cuisine

• Read Cuisine: the Lightweight Chef/Puppet Alternative

13

http://ur1.ca/45ku5
http://stackful-dev.com/cuisine-the-lightweight-chefpuppet-alternative

	Installation
	How to get started
	Troubleshooting
	Contributing specific implementations
	Modules
	More?

